Learning the Structure for Structured Sparsity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Structured Sparsity in Deep Neural Networks

High demand for computation resources severely hinders deployment of large-scale Deep Neural Networks (DNN) in resource constrained devices. In this work, we propose a Structured Sparsity Learning (SSL) method to regularize the structures (i.e., filters, channels, filter shapes, and layer depth) of DNNs. SSL can: (1) learn a compact structure from a bigger DNN to reduce computation cost; (2) ob...

متن کامل

Structured Sparsity in Structured Prediction

Linear models have enjoyed great success in structured prediction in NLP. While a lot of progress has been made on efficient training with several loss functions, the problem of endowing learners with a mechanism for feature selection is still unsolved. Common approaches employ ad hoc filtering or L1regularization; both ignore the structure of the feature space, preventing practicioners from en...

متن کامل

Structured Priors for Structure Learning

Traditional approaches to Bayes net structure learning typically assume little regularity in graph structure other than sparseness. However, in many cases, we expect more systematicity: variables in real-world systems often group into classes that predict the kinds of probabilistic dependencies they participate in. Here we capture this form of prior knowledge in a hierarchical Bayesian framewor...

متن کامل

Fast Algorithms for Structured Sparsity

Sparsity has become an important tool in many mathematical sciences such as statistics, machine learning, and signal processing. While sparsity is a good model for data in many applications, data often has additional structure that goes beyond the notion of “standard” sparsity. In many cases, we can represent this additional information in a structured sparsity model. Recent research has shown ...

متن کامل

Early Active Learning via Robust Representation and Structured Sparsity

Labeling training data is quite time-consuming but essential for supervised learning models. To solve this problem, the active learning has been studied and applied to select the informative and representative data points for labeling. However, during the early stage of experiments, only a small number (or none) of labeled data points exist, thus the most representative samples should be select...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2015

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2015.2446432