Learning the Structure for Structured Sparsity
نویسندگان
چکیده
منابع مشابه
Learning Structured Sparsity in Deep Neural Networks
High demand for computation resources severely hinders deployment of large-scale Deep Neural Networks (DNN) in resource constrained devices. In this work, we propose a Structured Sparsity Learning (SSL) method to regularize the structures (i.e., filters, channels, filter shapes, and layer depth) of DNNs. SSL can: (1) learn a compact structure from a bigger DNN to reduce computation cost; (2) ob...
متن کاملStructured Sparsity in Structured Prediction
Linear models have enjoyed great success in structured prediction in NLP. While a lot of progress has been made on efficient training with several loss functions, the problem of endowing learners with a mechanism for feature selection is still unsolved. Common approaches employ ad hoc filtering or L1regularization; both ignore the structure of the feature space, preventing practicioners from en...
متن کاملStructured Priors for Structure Learning
Traditional approaches to Bayes net structure learning typically assume little regularity in graph structure other than sparseness. However, in many cases, we expect more systematicity: variables in real-world systems often group into classes that predict the kinds of probabilistic dependencies they participate in. Here we capture this form of prior knowledge in a hierarchical Bayesian framewor...
متن کاملFast Algorithms for Structured Sparsity
Sparsity has become an important tool in many mathematical sciences such as statistics, machine learning, and signal processing. While sparsity is a good model for data in many applications, data often has additional structure that goes beyond the notion of “standard” sparsity. In many cases, we can represent this additional information in a structured sparsity model. Recent research has shown ...
متن کاملEarly Active Learning via Robust Representation and Structured Sparsity
Labeling training data is quite time-consuming but essential for supervised learning models. To solve this problem, the active learning has been studied and applied to select the informative and representative data points for labeling. However, during the early stage of experiments, only a small number (or none) of labeled data points exist, thus the most representative samples should be select...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2015
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2015.2446432